Neuropathology of Aging And Neurodegenerative Disease

Anthony T. Yachnis, MD
Professor and Program Director
Neuropathology
Department of Pathology, Immunology and Laboratory Medicine
University of Florida College of Medicine

No relevant financial relationships to disclose.

• What is normal brain aging?
• The Neurodegenerative Changes
 Alzheimer’s Disease
 Neuropathology
 Parkinson’s (Lewy Body) Disease
 Cerebrovascular disease
 Preventive measures
Aging changes in the human brain:

- Brain weight – range – 1450-1150 gm
- Lipofuscin
- Hirano bodies
- Corpora amylacea
- Vascular changes
- Plaques and tangles
GENERAL FEATURES OF NEURODEGENERATIVE DISORDERS

- Progressive loss of neurons and secondary white matter changes
- Affected groups of neurons with functional relationships
- Presence of abnormal protein aggregates ("proteinopathies")
 - Resistant to degradation
 - Aberrant localization within neurons (inclusions)
 - Elicit stress response from the cell
- Often directly toxic to neurons
- Progressive neurologic symptoms with impairment of "activities of daily living"
- No clear antecedent or inciting event

What are the “neurodegenerative” changes?

- Aβ-amyloid deposition
 - Neuritic plaques, diffuse plaques
 - Cerebral amyloid angiopathy
- Tau pathology
 - Neurofibrillary tangles, neuropil threads
- Alpha-synuclein pathology
 - Lewy bodies, Lewy neurites, glial cytoplasmic inclusions
- TDP-43, ubiquitin, p62

Alzheimer’s disease (AD)

- Most common form of dementia
 - Age 60-64: 5%
 - Age 85-89: 35%
 - 5.4 million Americans live with AD
 - Projected: 7.3 million by 2025
 - $277 billion dollars
 - National health care spending for AD
- Clinically:
 - Gradual, progressive impairment of higher cognitive functions
 - Deficits in memory, judgment, personality, language
 - Profound disability
 - May be sporadic (most common, older onset) or familial (5-10%, younger onset)
Gross findings: Widened sulci & narrowed gyri
Blunting of lateral ventricular angles
Small hippocampi
Reductions in white matter

Gross findings: Widened sulci & narrowed gyri
Enlarged ventricles
Small hippocampi
Reductions in white matter

Gross findings: Widened sulci & narrowed gyri
Enlarged ventricles
Small hippocampi
Reductions in white matter

Alzheimer's disease
Hyperphosphorylated tau (p-tau)

- Neurodegenerative diseases
- Triggered by traumatic brain injury
- Loose ability to bind to microtubules
- Accumulates in neurons and glia

Tau: Cytoskeletal protein - stabilizes microtubules.

- MAPT gene on chromosome 17
- Alternative splicing results in six tau isoforms that may contain either 3 or 4 tandem repeats (TR)
- TR regions correspond to microtubule binding sites on protein

Neurofibrillary tangles

- Cytoplasmic “flame-shaped” accumulations of paired helical filaments
- Composed of p-tau
- Remain after death of parent neuron
Alzheimer's disease
Hippocampus

 Tau immunohistochemistry

Braak and Braak Staging: TANGLES
Stage I-II: Entorhinal - Pre-Clinical
Stage III-IV: Limbic - Incipient AD
Stage V-VI: Isocortical - Dementia

Neuritic (senile) plaques

- Extracellular structures composed of “dystrophic neurites”, amyloid core, inflammatory cells:

Amyloid Precursor Protein
Gene: Chromosome 21

Amyloid plaques

Aβ-amyloid: Diffuse and neuritic plaques
Alzheimer's disease: Tissue Sampling

Sampling:
- Cerebral cortex
- Deep nuclei
- Brain stem

Measure:
- Extent of amyloid plaques - (A1 3)
- Neuritic plaque density - (C1 3)

Semi-Quantitative Evaluation of NEURITIC Plaques
FTLD-TDP
“Frontotemporal lobar degeneration with TDP43 inclusions”

- A non-Alzheimer neurodegenerative disorder characterized by TDP-43-immunoreactive inclusions (no tau or A beta amyloid).
- TDP-43 is major disease protein in the FTLD and ALS (amyotrophic lateral sclerosis).
- C9ORF72 mutations (Chromosome 9 open reading frame 72) (hexanucleotide repeat) in autosomal dominant form of FTLD-TDP
- FUS mutations in non-TDP43 FTLD or FTLD-ALS (RNA binding protein)

FTLD-TDP
“Frontotemporal lobar degeneration with TDP43 inclusions”

- TDP-43: Transactive response (TAR)-DNA-binding protein with a molecular weight of 43 kDa
- TDP-43 is an RNA-binding protein with roles in RNA processing and stress responses
 - Normally found diffusely in the nucleus
- Molecular genetics and pathogenesis:
 - Mutations in TDP-43 gene or associated genes
- Gross findings: atrophy of frontal and temporal lobes
Widespread TDP43 inclusions, especially in neocortex and hippocampus AND P62-positive inclusions in the cerebellum.

Abnormal cytoplasmic localization of TDP-43

Parkinsonism

- Clinical syndrome
 - Diminished facial expression, slowing of voluntary movements, rigidity, “pill-rolling” tremor, stooped posture, abnormalities of gait
 - Damage to dopamine producing neurons
 - Parkinson disease (PD) is the most common neurodegenerative disease to produce clinical parkinsonism

Dopamine

L-DOPA

Neuropathology of Aging And Neurodegenerative Disease

Anthony T. Yachnis, MD
Professor and Program Director Neuropathology
University of Florida

Coding Fiesta 2019

October 26, 2019
Parkinson’s disease - treatment

• L-DOPA – Levodopa: Chemical replacement of dopamine

• Deep brain stimulation:
 • Used in pharmacoresistant cases

Gross findings: Left cerebral hemisphere

Post fixation weight: 1107 gns
Gross findings: Hypopigmentation

Parkinson disease
- Idiopathic Parkinson disease: rigidity, tremor, abnormal posture and gait
- Disease of the elderly (75 - 80% are 75 or older)

Parkinson disease
- Pallor of pigmented neurons of the midbrain:
 - SUBSTANTIA NIGRA
Parkinson disease

- Loss of pigmented neurons and associated gliosis
- Lewy bodies: toxic accumulation of α-synuclein

Dementia with Lewy Bodies
Parkinson's disease dementia
Neuropathological Diagnosis

I. Adult brain (pre-fixation weight: 1107 gm)
 A. Lewy Body Disease, Neocortical Type
 1. α-Synuclein-immunoreactive Lewy bodies and neurites
 a. Substantia nigra, locus coeruleus, medullary tegmentum
 b. Deep neocortical layers: frontal and temporal lobes
 1. Aβ-amyloid immunoreactive plaques involving cerebral cortex, deep nuclei, and brainstem tegmentum
 2. Moderate tau pathology: Braak stage III
 C. Cerebrovascular disease
 1. Mild, cerebral amyloid angiopathy
 2. Cerebrovascular atherosclerosis, mild
 3. No lacunar or other ischemic lesions

Neurodegenerative Diseases: “Proteinopathies”

Alzheimer’s Disease A Beta-amyloid (plaques) Tau

Frontotemporal Lobar Degenerations:

 Progressive Supranuclear Palsy Tau
 Pick’s Disease Tau
 Corticobasal Degeneration Tau
 FTDP-17 MAPT Tau
 FTLD-TDP TDP-43

Parkinson’s Disease α-synuclein
Dementia with Lewy Bodies α-synuclein
Multiple System Atrophy α-synuclein

Coding Fiesta 2019 Anthony T. Yachnis, MD
Professor and Program Director Neuropathology University of Florida

October 26, 2019
Cerebrovascular Disease

- Atherosclerotic CVD
 - Diabetes / Hypertension
 - Smoking / Cholesterol
 - Inactivity
 - Macroscopic infarcts

- “Small vessel” disease
 - Hypertension
 - Older age
 - Multiple lacunar infarcts
 - Microinfarcts

Brain Arteriolosclerosis
“Small vessel cerebrovascular disease”
Hippocampal sclerosis of aging

- > 85 y/o
- Marked neuronal loss in hippocampus
- TDP43 inclusions in limbic structures: Hippocampus, amygdala
- Genetic Risk Factors:
 - ABCC9 – Brain arteriolosclerosis
 - GRN/TMEM106B

106 year old 17 year old

Normal Aging:
At the moment, there are no clinically useful treatments available for Alzheimer’s Disease that modify the long-term clinical outcome.

Preventing Cognitive Decline and Dementia:

- Encouraging education
- Challenging leisure activities
- Learning more than one language
- Avoiding head injuries
- Maintaining good sleep habits
- Making healthy dietary choices
- Aggressively treating cardiovascular risk factors
THANK YOU!!